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A Collocation-Galerkin Method for a First Order 
Hyperbolic Equation With Space and Time-Dependent 

Coefficient 

By David Archer and Julio Cksar Diaz* 

Abstrac. A collocation-Galerkin scheme is proposed for an initial-boundary value problem 
for a first order hyperbolic equation in one space dimension. The Galerkin equations 
satisfied by the approximating solution are obtained from a weak-weak formulation of the 
initial-boundary value problem. The collocation points are taken to be affine images of the 
roots of the Jacobian polynomials of degree r - 1 on [0, 11 with respect to the weight 
function x(l - x). Optimal L'(L2)-norm estimates of the error are derived. 

1. Introduction. In this paper we propose a collocation-Galerkin scheme for an 
initial-boundary value problem for a first order hyperbolic equation in one space 
dimension with a time- and space-dependent coefficient. 

Collocation-Galerkin methods were originally introduced by Diaz [3], [4] for the 
two-point boundary value problem. These methods were introduced in order to 
define collocation-like schemes for problems in which the local behavior of the 
solutions was best represented by spaces of lower continuity than required by the 
collocation scheme. The continuity constraints removed were replaced by condi- 
tions on the nodal jumps. It was shown in [3], [4] that certain Galerkin equations 
impose conditions on certain jumps of the approximating function across the 
nodes. For a second order problem, the L2-Galerkin formulation imposes jump 
conditions on the first derivative, while the H - '-Galerkin formulation imposes 
conditions on the jumps of both the function and its derivative. For elliptic partial 
differential equations, Wheeler in [7] has described and analyzed a procedure that 
uses an interior penalty L2-Galerkin formulation to control the jumps across the 
elements. 

In this paper we extend this class of methods to initial-boundary value problems 
for a first order hyperbolic partial differential equation. The collocation method for 
this class of problems was described and analyzed by Archer in [1] using continu- 
ous piecewise polynomial spaces. The scheme presented here uses collocation on 
discontinuous approximating spaces. The continuity conditions of the approximat- 
ing space at the nodes are replaced by Galerkin equations similar to those 
described by Baker in [2] using a weak-weak formulation of the initial-boundary 
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value problem. Like Baker's scheme, this scheme is analogous to H -'-Galerkin 

methods, more specifically to the collocation-H - '-Galerkin methods proposed by 
Diaz [5] and Dunn and Wheeler [6]. 

In Section 2, the collocation-Galerkin scheme is defined and some notation is 
introduced. In Section 3, the convergence analysis is presented. To this end, we 
introduce a first order projection with respect to the space variable and derive 
optimal global estimates for this projection. The remainder of the analysis consists 
of comparing the collocation-Galerkin solution with the first order projection. The 
use of estimates derived for this projection and the triangle inequality then leads to 
the desired result. Similar ideas have been used by Diaz [5] to analyze a colloca- 
tion-H -'-Galerkin method for parabolic problems with time-dependent coeffi- 
cients. 

2. The Hyperbolic Problem and Some Notation. In this section, we describe the 
first order initial-boundary value problem under consideration, introduce the 
continuous in time collocation-Galerkin scheme for this type of problem, and 
define some notation to be used in the analysis of the scheme. 

2.1. The Initial-Boundary Value Problem. Consider the first order hyperbolic 
initial-boundary value problem 

au a - + -a (a(x, t)u) = f(x, t), (x, t) E I X J, 

(2.1) u(O, t) = g(t), t e J, 

u(x, 0) = uO(x), x E I, 

where I = (0, 1) and J = (0, T). Assume a, ax, a., a,, a,x and a,1x E L'(I), uni- 
formly in t. Also assume that there exists a positive constant ao such that 

aO < a(x,t), (x,t) E I X J. 

Before describing the collocation-Galerkin approximation to (2.1), we introduce 
some notation. Let 8 = (O = xo < x < < xN = 1) be a partition of I with 

-= (xi_,x,), hi = xi-4xi_ for i = 1, . . . N and h = max,I<Nh,. Weassume 
that the class of partitions 8 is quasiuniform; that is, there is a constant a, 
independent of h, such that oh < minl%ii(N hi. For a positive integer r, denote by 

P,(D) the class of polynomials of degree not greater than r restricted to the set D, 
and let 

'<R,-1 cD1,r1(8) = {v: v1, E C (hP), 1 < i < N), 

and for an integer k satisfying 0 < k < r, define 

'k =_ 9trk(8) = Hk+'(I) n DU-, n {v: v(l) = 0). 

Let Jr l be the Jacobi polynomial of degree r - 1 on I with respect to the weight 
function x(I - x). The collocation points are defined to be the affine images in 
each subinterval of the roots pj of Jr.-, The N(r - 1) collocation points are then 
given by 

xij = xi-Il + hip>, I S j < r-1I, I < i < N. 

The collocation-Galerkin method determines a differentiable map U: [0, T] 

6ITU-h, which satisfies (2.1) at the N(r - 1) collocation points and a weak-weak 
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form of (2.1) with respect to 9h. Thus, for t e (0, f1, we require 

(U, + (aU)U-f)(x,) = I, 1 j r- 1, 1 S i N, 

(U,, V) - (U, aVx) = (f, V) + a(O, )g(t) V(O), V e 6R, 

and for t = 0 

(2.2ii) x-(a(U- = O, I < j < r-1, 1 6 i < N, 
(U-uo, aVx) =0, VE6)kq, 

where (4, 41) = f1 , is the L2-innerproduct on I. 
2.2. Semidiscrete Innerproducts. In order to analyze the method (2.2), we restate it 

in a semidiscrete variational form that uses the semidiscrete innerproduct and 
bilinear forms that are introduced in this section. 

A subspace of '% important to our presentation is defined by 

Zor =Z(8) = {v E 91jv(xi) =O,i=O, 1,...,N}. 

ZO can be characterized by the property 

(2.3) Z 
= , , 

Let the positive weights w,, i = 1, . . ., r -1, be the unique choices such that 

J x(l - x)p(x) dx = 2 w1p(p1), p e P2r3(4)* 
j1= 

Let v and 0 be defined on I, and let v satisfy v(xi) = 0, 0 < i < N. Then define the 
discrete bilinear form 

<0, v>i = hi fi w, Il <) i < N, 

and 
N 

<Kk V> = < K+, V>X 
i = I 

Note that if 4 E Pr (I) and v E ZO', 

(0, v)i f | (x)v(x) dx = <K, v>i. 

Now let 4, be defined on I and let 41i e K! satisfy (4, - 411)(xi) = 0, 0 i S N. 
Let 4'2 = 4' - 4,1, and note that A2(x1) = O, 0 ? i < N. For a function 0 defined on 
I, let 

<K, '>i = Kk, 42>i + (0, 410 1 < i < N. 

Notice that if * + Ez P2r- I(Ii), then 

(2.4) <K +P>i = (> , 4,)i. 
In particular, if 0 e ' 91Ui'= and 4, e D4, then 

(2.5) <K, 4> = (0, 4,). 
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For a function a E L2(I) with first derivative a' defined on each Ii, we define an 
additional semidiscrete bilinear form 9C(., *) by 

(0, A)= (d (a+),2 ) -2 a ) 

where 41, and 4'2 are as above. Note that if e 9Et1 1 and 4, E , then 

SC(>,{)= -(? adx ) 

when a E PI(I), for each Ii. 
With the foregoing notation, it follows that U(., t) E 91U-,' satisfying (2.2) also 

satisfies 

(2.6) <U,, V> + JC(U, V) = <f, V> + a(O, t)g(t)V(O), V E '4. 
The use of relations (2.5) on Eqs. (2.6) shows that the collocation-Galerkin 

method is equivalent to finding U: [0, T] --= 91Zf?1 satisfying 

(2.7)(U1, V) + 9C(U, V) = <f, V> + a(O, t)g(t)V(O), V e , t e J, 

)CK(U(., ) -u0, V)=O, ve k9. 

Notice that because the solution u to the initial-boundary value problem (2.1) 
also satisfies Eqs. (2.6), we have 

(2.8) (U,, V) + 9C(U, V) = <u1, V> + ?h(u, V), V E 9 , t E J. 
Before proceeding with the analysis, we introduce some additional notation. Let 

E denote a fixed interval. For integer s, HS(E) denotes the closure of C ?(E) in the 
norm 

s 1/2 

IIfI IH'(E) L (?( P' 2E) , S 
i =O 

and 

lIfIIH5(E) sup IIXII 
E () < 

0O#XEC'(E) IXI-'E 

respectively, where lf 2I2I = fEf2(() d(. Also, let T E (0, oo) be fixed, then 
define for p = 2,oo 

LP(O, T; Hs(E)) = {v: [0, T] -* Hs(E)I IIVILP(H(E)) S oo 

where 

IIVIIL2(H-(E)) = (T IvQ, t)II (E) dt) 

and 

IV IIL|(H-'(E)) = SUp IIV( , t)IIH| (E). 
O<t<T 

Also for q a positive integer, let 

IIViiH~(O,T;H~(E)) 
q 

( T akV 2 1/2 
11V||I H1(O, T; H-(E)) ( I O1 atk 

dt () 
\ok=O Hpk Ht(E) / 

For simplicity we shall suppress the dependence of E whenever E =I. 
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An estimate for the H --norm of elements of O=1U, which we use in our 
analysis, is given in the following lemma. The proof is presented in the appendix. 

LEMMA 2.1. If F E 91U, then there is a constant C, independent o h, such that 

IEFIIH-i 6 |(F, 1)| + C sup (F, X)I 
0.#C-X E 'SX L2 

We now state some well-known inequalities that we shall use later. Let ,u be the 
length of the interval E. There exist constants C, and C2, independent of I,u such 
that for?0 E H'(E) 

(2.9) Ik>IIL L(E) < C,{ tL IkIIL2(E) + M - IkIIL2(E)}, 

and for ? E P(E), s > 0, 

(2.10) IkkIIL2(E) < C2<L 11 11L 2(E) (inverse property). 

3. Error Analysis. Let u denote the solution to (2.1), and let the map U: 
[0, T] X-* '1D, denote the solution to (2.3). 

The central result of this paper is given by the following theorem. 

THEOREM 3.1. Let u denote the solution to (2.1), and let the map U: [0, T] '11' 
be the solution to (2.2). If u, u, and u,, E L2(0, t: Hr(I)), then for h sufficiently small, 
there exists a constant C independent of h, such that 

||U UllL(0T;2) < C(( h 2,11U112O9;(I) IIU - UIIL-(O,T; L) i L7IIII(o,T; H'(11)))1/ 

/N 1/2 

In order to prove the theorem, we introduce the first order projection. In the 
following two sections, we compare this projection to both u and U, obtaining the 
estimates that we use in the proof of this theorem. 

3.1. First Order Projection. In this section we introduce a map W: [0, T] -11' 
via a first order projection of u with respect to the space variable and derive error 
estimates for this projection. Since the coefficient a is time-dependent, in this 
section we also obtain estimates for time derivatives of u - W. 

The map W: [0, T] --* O1U11 is defined, for t E J, by 

(3.1i) a 
(aW)(x,, t) = --(au)(x, t), I < j < r - 1, 1 < i < N, 

and 

(3. 1ii) (W,a Vx) = (u, a V) V E_ 6) 

The estimates of u - W are contained in the following theorem which sum- 
marizes the results of this section. 

THEOREM 3.2. Let u be the solution of the initial-boundary value problem (2.1) and 
W the solution of Eqs. (3.1). If, for some integer k > 0, 

a kU 
LP(, T; H'()), atk 
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then 

ak E LP(O, T; ?T' ). 

Furthermore, there exists a constant C such that 

ak k c Nh~ ~ 2 )1/2 

atk | LI(L2) j=O0 = I at' I LI (H'(1I)) 

We divide the proof of Theorem 3.2 into several lemmas. In Lemmas 3.2 and 3.3 
we consider the case k = 0. The case k > 1 is a consequence of Lemma 3.4. In 
Lemma 3.1 we derive a duality result that is used in the analysis of the first order 
projection. 

LEMMA 3.1. Let r e L2(I) with qx e L2(I,), 1 < i < N. Let t E H'(I) satisfy 
~(1) = O and 

-a- , x EI 
ax 

Also let X e GD1i) satisfy x(xi) = ((xi), 1 6 i < N. Then for h sufficiently small there 
exists a constant C, independent of h, such that 

(3.3) |IIL12 
< C { hiII'xlIL2(I,)IIxIIL)2(i)} (q, a-a-x) 

Proof. By the assumptions on a it follows that 

< Cllql . 
ax L2 

Let X = -x; then 

(71, 71) = 7,axa -(1 ax q)- 7, a ax ) 
Notice that t(xi) = 0; thus 

( aa 
N 

ax ax ax 

< C ll||ll| 211 i || L2 + 1N E x L2(Ii)I L2(I)} 

< C{*hllII1L2 + E hillx IIL2(i)II)XIIL2(I,)) 

Thus taking h sufficiently small concludes the proof of the lemma. 
In order to prove Theorem 3.2, we introduce a map R: [0, T] -1? and 

derive error estimates for u - R and W - R. The map R satisfies, for t E J, 

aR au (3.4i) aR (x1j, t) =y-a(xij,t), I<j <r -1, 1 <i ' N, 
and 

(3.4ii) (R, aVx) = (u, aVx), V e 6T. 

Estimates for u - R are presented in the following lemma. 
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LEMMA 3.2. Let u be the solution to (2.1) and the map R be the solution to (3.4). If 
u E H'(I), then, for h sufficiently small, there exist constants C1 and C, independent 
of h, such that 

1ax(u 
- R) ?L2(I) 

< Clhi lIIu 

and 

N 1/2 

Ilu - RIIL2 H C(E hrlIII()) 

Proof. We first demonstrate the existence and uniqueness of R. From (3.4i), by 
interpolation we conclude the existence and uniqueness of RX. To show that R is 
unique, we assume that both R1 and R satisfy (3.4). Then E = R1 - R is a 
constant on each subinterval Ii that we call A3X. Now, using the Galerkin equations 
(3.4ii), we find 

(E,aVx)=O, VecY'kT. 

For i = 0, 1, . .. , N - 1, let Vi be the continuous piecewise-linear function such 
that Vi(xj) = 6ij, 0 < j < N. The space 9D1t4 is the linear span of these functions. 
Hence by taking V = Vi, i = O ..., N- 1, since a(x, t) > ao > O for (x, t) EI 
x J, 

f adx>O, i= 1,...,N. 

Thus /3 = = =2 8N = 0, which implies that E 0 O and establishes the 
existence and uniqueness of the solution R to (3.4). By (3.4i) and interpolation at 
the collocation points, we have 

||ax ( 
|L2(1 ) 

i l* 11 ull H'(l. 

ax 

Hence, by Lemma 3.1 and (3.4ii), 

N 1/2 

114A12L 
2 < C h h2114|xIL22(Ni) 

The estimates for W - R are contained in the following lemma. 

LEMMA 3.3. Let u and the maps W and R be the solutions to (2.1), (3.1), and (3.4), 
respectively. Then, for h sufficiently small, there exists a constant C, independent of h, 
such that 

1C(hIU-R 2 + ( h|| a( |2()N )1/2 
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Proof. Let E = W - R and e = u - R. Then, at the collocation points because 
of (3.1i) and (3.4i), we have 

a(aE) a a(W - u))(x,,) + a (a(u - R))(x 
a 

= a (ae)(xy) = aej(xi) + axe(xij) = axe(xv). 

Since 

(av)x axv 
a a 

then 

Ex((,) E + 'e(, EX(Xij)=(- aE ae)Xj 

and 

|Ex(xij)I < C{I IE IIL-(j) + IIeIIL-(lj))} 

Hence 

|ExII L`(l) < C { I I E L-(1j) + hell L-(l)) 

Using inequalities (2.9) and (2.10), we have 

Exll oo(,) < C {hi- 1/211EFlL2(),j + hi'"211 ExIlL2(I,) + hi- 1/21 lelIL2(,) + hi,211 exII L2(,)) 

< C{hi-I/211E IL2( I + hi-1"21lelIL2(s) + hi,"2IIexllL2(I)}. 

It then follows that 

(3.5) IIEXIIL2(L) < C{IIEIIL2(i,) + IIeIIL2(,) + hiIlexIlL2(,)}. 

Now, we use duality. Let 0 E H'(I) satisfy 4(1) = 0, and 

a a=-E, xeI. 
ax 

Thus, by Lemma 3.1, (3.1 ii) and (3.4ii), we obtain 

IIEII12 < EXL2(,)hi - L2(1)) 

+hIIeII2 ~~~N ao 
C(IEI2 aX + h 1 h 2(ei2 aXL() < ChIlEIL2a x 2 + hllellL aX IL 2 i exll L2(P) 

where we have used (3.5). Hence, using the Cauchy-Schwarz inequality, we obtain 

I|EII12 < C(hIIEIIL2 + hIIeIIL2 + ( I h, 41eXI2 2(I) ) |ElL2. 

Thus, on choosing h sufficiently small, we obtain 

IIEIIL2 < C{ hIIeIIL2 + ( h L 

which proves the lemma. 
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The estimates (3.2) for k > 0 are derived via an inductive argument. However, in 

order to avoid cumbersome details, we show the induction step for W,. To do this 

consider a map Y: [0, t] -- 9'171' satisfying, for t E J, 

(3.6i) a (aY)(xij, t) = -a-(au1)(x,, t), 1 6 j < r - 1, 1 < i < N, 

and 

(3.6ii) (Y, av.) = (u, av.), V E C-ff4. 

Optimal estimates for Y - u, follow from Lemmas 3.2 and 3.3. We compare W, 
and Y in the following lemma. 

LEMMA 3.4. Let u be the solution to (2.1), the map W be the solution to (3.1), and 

the map Y the solution to (3.6). Then, for h sufficiently small, there exists a constant 

C, independent of h, such that 

N 1/2 

|| Y - W'JIL2 < C||U - W1IL2 + C h h1(U - W)XII22(1} 

Proof. Letin = W, - Y and e = u - W. Then, from (3.1) and (3.6), 

aa (a-q)(xij, t) =[-a (ae,) + aa (a(u, - Y)) (x,v, t) 

[- d2ae + a (a e)](xy, t) = -a-(a,e)(x,, t) 

a,xe + a,ex](xy, t). 

Note that for sufficiently smooth 0 

=(ao)~ 
x ax,0 

?>= a a 

hence 

al 
(x,, t) =-[ (aq)x - axrq](xi, t) = a [a1.e -ax + a,ex](xy, t) 

a a, a 

ax a a 
Thus, by estimating and using (2.9) and (2.10), we obtain 

(3.7) IIT1xIIL2(I) < { I ItIIL2(I,) + tellL2(j,) + hilleXIIL2(I,)} 

We use duality now. Let 4 E H' satisfy o(1) = 0 and 

ak 
-aa 

=nxEI. 

Thus, by Eqs. (3. Iii) and (3.6ii), we have for X 

(3.8) (na-x) = - a(e,,a-x) 

d ( ) ( a ( ' ) ( 
e, a-O + e, a-,O + e / e, a,-x dt dx a axx'ax 
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Hence, if we pick X such that x(xi) = O(xi), we obtain by Lemma 3.1, (3.7) and 
(3.8) that 

II1II22 e, a, ax) + cE hi1qxI L2( I,) 1pxjL2( J ) 

(N 1/2) 

< C (|e|L 2 + h||'ql|L2 + ( h, IIXII22(j)) IIkXII 2i 

Therefore 

2 + hIInIIL2 + ( q 
h7II4XII22(Ij)) ) 

Taking h sufficiently small concludes the proof of the lemma. 
The proof of Theorem 3.2 now follows from Lemmas 3.2, 3.3, and 3.4 and the 

triangle inequality. 
Using arguments similar to those used to prove Theorem 3.2, we can derive 

H - '-norm estimates of u - W which will be used in obtaining the final estimates. 
These estimates are contained in the following corollary to Theorem 3.2. 

COROLLARY 3.1. Let u and W be as in Theorem 3.2. Then there is a constant C, 
independent of h, such that 

k ~~k a' 
||at (u wil < Ch Y |a -7 (u w)| at kH j=0 atj 2 

Proof. The case k = 0 is proved similar to Theorem 3.2 of Baker [2]. For k > 1, 
use Eq. (3.8) and proceed similarly to the arguments in Lemma 3.4. 

3.2. Estimation of U - W. In this section we compare the maps U and W. To do 
this, we derive some quadrature estimates due to the semidiscrete innerproduct and 
use them to obtain estimates for E = U - W. There are two basic estimates that 
we derive. First we estimate IIE,I H -. Then E EI IL2 is estimated. The estimates for E 
are contained in the following theorem. 

THEOREM 3.3. Let u be the solution to (2.1) and let the maps U and W: 
[0, T] -kL' be the solutions to (2.2) and (3.1), respectively. If u, u, and u,, E 
L2(0, T; H2(I)), then, for h sufficiently small, there is a constant C, independent of h, 
such that for 1 < s < r - 

( ~~ ~~~N au 2 

II U - W1IL-(L2) 6 ChH) |U - W1IH2(L2) + E hi - 

at H('I) 

In order to prove Theorem 3.3, we first derive some basic results. Let e= 
u - W. From (2.8) and (3.1) we obtain 

(3.9) a( a(U - W), V) + SC( U - W, V) < <el, V >, V E 9. 

For o E L2 and defined on each Ii and V E 91, let 
N 

qi(o, V) = <0, V>i - (k, V)i and q(4, V) = E qj(0, V). 
i =1 
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Also, for R E 9'1I and V E 61, let 

Q(a,R, V)= R, a1a) + JC(R, V). 

Hence, we can rewrite (3.9) as 

(3. 10) (E,, V) - (E, aXV) = (c,, V) + q(u,, V) + Q(a, E, V), V E cx. 

In order to derive the error estimates, we must estimate the quadrature errors q 
and Q. These estimates are a consequence of the following two lemmas. 

LEMMA 3.5. Let 4 E Hs(I,), I 6 s < r, and V E . Then, there exists a constant 
C, independent of h, such that 

lqi((P, V)l < Chis|+||IPIH'(I,)| V ||L 2(,). 

Proof. Because of (2.3), for V E ' there are unique V, E 9Rh and V2 E Zo, 
such that V = VI + V2. Moreover, 

|| 
|L2(,)= 

II( V - VI)IIL 2(j) 6 C| 2( 

and q,(4, V) = q*(o, V2). Choose X E Ps_ (I,) such that 

(3.11) 110 - XIIL2(I1) + hill(o - X)'IIL2(I) < Chis74IIH-(I). 

Note that, for V E 'k and I < s < r, qi(X, V) = 0. Let4+ = X.- Then 

qi(o, V2) = qi(X, V2) + qi(4j, V2) = qi(p, V2) 

N lkX)V(y X1+ 
= hi E wIl -i 4)(()V2(() d, 

j=1 p - i 

< Chi 4jVL-(I,)|| V21IL?(I/) + C114|IIL2(I) I V211L2(J) 
~ Ch{ IIkIIL(o +hiIII'112(j) VII L2(1 + 2(,hl V'IIL2(Ji) Chi({114+111 L2( 1) + hi ll || L2(1)}| V2 ||L(1)+C|| 4 || L2(1)^l V2 11L21) 

<- Chis |I?)IIHS(I,)Il V IIL 2(I,), 

where we have used inequalities (2.9), (2.10), and (3.11). This completes the proof 
of the lemma. 

LEMMA 3.6. Let a" E L ?(I,), R E D17I1 , and V E 94. Then there exists a 
constant C, independent of h, such that 

|qi (dx (aR ), V ) < Ch 2Il a " || L"O(I,) || R 11 L2(1 ) 11 V' 11 L2(1 I). 

Proof. As in the previous lemma, it suffices to consider V E ZO. In this lemma a 
more careful argument is needed to exploit the fact that R is a piecewise poly- 
nomial. Let a-i e PI(I,) such that a(x) = a-i(x) + a(x), where 

It a L(I,) + hjIt aIIL|(Ij) < Ch7iIa 2 
LX(J)a 

Because of (2.4), we have 

qi d 
(aR), V) = qi 

d 
(aR), V) 
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Moreover, since V E Z0, 

(3.12) qi( dx(aR), V) = ( a(R), V) i + (R adx i. 

Now we estimate each term on the right-hand side of (3.12) as follows. For the first 
term 

( d ) E~~~ d(aR)Idxlx_x fxii V'(,) d&, 

(3.13) S Ch,5/2 IILf(,) + hiIIR' J)}Ia IILNJ,)II V'IIL2(I) 

S Chi || a ||L ( |R| 2(I ) 11V 1 2(I,). 
( hiI"IIL-(I,)IIRIIL()I I" IL () 

In the foregoing we have used inequalities (2.9) and (2.10). The second term is 
estimated using Cauchy-Schwarz inequality 

(3.14) (R, a dV) < CIIaIILC(I)IIRIIL2(j)II V'IIL2(u) 

S 2h, | a |ILC(1)IIRIIL2(Ji)II 1:V7,1 L2(I,). 

Estimates (3.13) and (3.14) and Eq. (3.12) complete the proof of the lemma. 
Now, we estimate E, in the H - '-norm. For this, we write (3.10) as 

(3.15) (E,, V) = (E, a a V) + (*,, V) + q(u,, V) + Q(a, E, V), V E 6Z, 

and estimate each term of the right-hand side. The first two terms are estimated as 
follows: 

(E, a av ) C6 C|El L 2| JVIH' 6 Ch l||E||L 211 qlL2 

and 

(Ell V) < CII|6CIIL2II VIIL 2. 

In order to estimate the quadrature terms, we make use of Lemmas 3.5 and 3.6 
as follows; by Lemma 3.5, we have, for I < s S r -1, 

N N 

Iq (u, V)l i *(u,, V) < qi I(u,, V)l 
i=l .= 

N N 1/2 

6 C E hik' 11u111 W)I V'11L2(J) < C h2jlu 1112 2| V1IL. 

By Lemma 3.6, we obtain 

jQ(a, E, V)j 6 Ch II Ell L211 VII 
L2. 

Hence 

(El, V) < C(h'IIEIIL2 +IICIIIL2 + ( h,2`I IUtH1(,)) ) 2 .IL 

Now it follows by Lemma 2.1 that 

3.16) IIEAIH_ ( C(h IIEIIL2 +IICIIL2 + ( E h, IIulIIH(I)) +I(El, 1)1) 
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We now complete the proof of Theorem 3.3 by deriving an estimate for IIEIIL2 in 
terms of II E, IIH-1- 

Let the map 4i: [0, T] - satisfy 

axA (X t) = -E(x, t), t E J, x E I. 

Then 

(3.17) 114IIHW < CIIEIIH'-, s = 0, 1. 

Choose the map V: [0, T] -- 6D such that 

V(x, t) = at (X, t), t E J; x E I. 

With this choice of V in (3.10), the terms on the left-hand side of (3.10) can be 
estimated as follows: 

(3.18) (E,, V) = - ( Vs, V) =4(V(0, t))2 =I (E,, 1)12 

and 

-(E, a a)=(E, aE,) = t(E2 a) - 2 t(E, a) -2 (E, a,) 
(3.19) axd 2 at2d2 

2 dIlIVEIIu L2-CII Ell L2. 

Hence, on using (3.18) and (3.19) on (3.10), we obtain for this choice of V that 

(3.20) 41 V2O t) + I VaEtL2 < C?lEllL2 + (e,, 4',) + q(u,, 41,) + Q(a, E, 41). 

The last term of (3.20) is estimated using Lemma 3.6, (2.10), Cauchy-Schwarz 
inequality and then estimates (3.17) and (3.16) to obtain 

IQ(a, E, %4,) I 6 Ch 11 Ell L2 11 lk 11 L2 < ChIl0ElL L2 10Etll H-1' 

ChIIEIIL2t( h'IIEIIL2 + ( h7 II| H(II)) +I(E,, 1)1 + llEtll L2} 

Using the inequality ab < '(a2 + b2), we get 

Q(a, E, 4',) < C IIIEII2 2 + h211EtIIc22 + h2( h25sIIu,II2(I)') 
(3.21) '1) 

+ -h I (Et, 1) I. 

Thus, on using (3.21) on (3.20), choosing - appropriately, and using the fact that 
V2(O, t) > 0, we obtain 

2~ ~ d-I|SEi|v ? C IIEII22 + h211eI,I2I2 + h2( E h25Iu I I (IU))} 
+ (c,, 4,) + q(u,, 4',), 
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and, on integrating over I from O to , we get 

|| a EII L2(T) < C (11 EII L2(0)+ 11 EII L2(0, ,L2) + h 21 etII2L2(O, ; L2) 

+ h2( X h7I L4tII L2(O,ir; H3(1I))) } 

+2f (E,, 4,) dt + 2f q(u,, 4,) dt. 

Using integration by parts in t on the last two terms, we obtain 

f (c,, 4,) dt = (E,(, T), 4,(., T)) - (c,(, 0), 4,(, T)) -f (en, 4,) dt 

and 

f q(u,, 4,) dt = q(u,(, T), 4(, T)) - q(u,(, 0), 4,(, 0)) - q(u,,, 4,) dt. 

These terms can be bounded as follows: the first one using Cauchy-Schwarz 
inequality, (3.17), Corollary 3.1, and the inequality ab < '(a2 + b2), to get 

(fl, 411) dt| < C(Ilf1llH-i(T)I4IAIHB(T) +|eIfilH_1(0)II41IIHI(0) 

+ || I,l|| L2(O,r; H- ')II 4,11 L2(0,r; H'1) 

S C { h(|| eIIL2(T) + || II| L2(T)) | ElI L2(T) 

+ h(II |IIL2(0) + II El IIL2(0))II E IIL2(0) 

+ hil eli H2(0,ir; L2)II Eli L2(0,r; L2)} 

< C {IE|E (O) +20 Ell2,2(.; L2) + h211 El 2H2(0,; L2)} + l12 EIIL2(T). 

Similarly, using Lemma 3.5 and proceeding as above, we get 

Jo q(u,, 4,) dt < C { ElIL2(0) +II EIL2(o,r,L2) 

+ h2( z h SII UtII Ht(O r; H1(1)) } + LEIIQr) 

Hence, on combining the above estimates and choosing q appropriately, we 
conclude 

IIEII122(T) < C { IIEIIl2(0) +|IEII12(O,; L2) + h2IIeIIH2(12L2) 

+ h2( z h,25II UtII Ht(O,r; H1(I)))). 

Therefore, from (2.2ii), (3.1), and Gronwall's lemma, we conclude the proof of 
Theorem 3.3. 

Theorem 3.1 follows from Theorem 3.2, Theorem 3.3, and the triangle inequality. 

4. Appendix. In this appendix we prove Lemma 2.1. To do this we prove some 
approximation results for the projection of a function into 9% using M-,' as test 
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space. The estimates are contained in Lemmas 4.1 and 4.2. The projection is 
defined as follows: 

Consider a function v E H'S(I), v(l) = 0, for s > 0, and let V E XD satisfy 

(4.1) (v - V, Q) = 0, VQ E ,'. 

In order to obtain estimates for this projection, we define a local projection 
which is defined and analyzed in the following lemma. 

LEMMA 4.1. Let v be a function on the interval F = [b, d] and v E Hs(F), 
1< s < r + 1, and let Y E P,(F) satisfy 

(4.2) f(v- Y)Q dx = O, VQ E Pr_1(F), 

and Y(d) = v(d). Then, there is a constant C, independent of h, such that 

(4.3) || Y - VL2(F) + LI|( Y - 
V)xIL2(F) < CL IVI|H'(F) 

and 

(4.4) I( Y - v)(b)I < CM / 11VII H(F) 
where /i = Id - bl. 

Proof. Let w(x) = d - x, and define W and D in P,r 1(F) by the relations 

Y(x) = v(d) + w(x)W(x), x(x) = v(d) + w(x) (x), 

where X E Pr(F), X(d) = v(d). Then (4.2) is equivalent to 

JLw(W-)Qdx= (V X)QdX, VQEEPr-1(F). 

Take Q = W - D to get 

fWQ =f (v - X)Q dx -I IV -XIL2(F)IIQIIL2(F). 

By changing variables from [b, d] to [- 1, 1] and considering an appropriate Ritz 
quotient, it follows that there is a constant C, independent of t, such that for 
Q E Pr (F) 

Cp||jQ|| L2(F) < dx. 

Thus .uIIQIIL2(Fl < CIIV XIIL2(F); moreover 

11 Y - X|IL2(F) -| WQII L2(F) < || W 11L2(F)I IQII L2(F) - C||Q| . 

Thus 

(4.5) || Y - 
X|IL2(F) < CIIV - XIIL2(F), 

and, by the inverse property (2.10), we get 

(4.6) Mll(y - X)XIIL2(F) < CII Y- XIIL2(F). 

From the triangle inequality, (4.5), and (4.6) we get (4.3). To obtain (4.4) notice that 

(V - Y)2 (b) = -f (v - Y)(v - Y)X dx < IIv - YIIL2(F)II(V 
- 

Y)XIIL2, 

from which use of (4.3) gives (4.4). 
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In the following lemma we state and prove the approximation results for (4.1). 

LEMMA 4.2. Let v E HS(I), v(l) = 0, and let V E 'I satisfying (4.1). Then, there 
exists a constant C, independent of h, such that 

liV - VIIL2 
+ hll(v - V)xIIL2 < ChS IIvIHVI 1 < S < r + 1. 

Proof. The proof demonstrates that the following estimates hold for each subin- 
terval Ii. 

i V - V IIL2(1,) + hill(v - V)XIIL2( I) 

(4.7) C (IIVIIgHS(I) + hi/2(E hs - 1/2|V') 

and 

(4.8) j(v- V)(xj)j?c( hs11/2llvllHi(I)). 

The lemma follows readily from (4.7) and (4.8). Notice that these estimates 
clearly demonstrate that the "pollution" effect as one proceeds from the right to 
the left of the interval remains bounded at the level of the discretization error; 
therefore, the loss of a power in the estimate. 

Take Q E P, (I(v) in (4.1), then by Lemma 4.1 these estimates hold. We now 
assume that (4.7) and (4.8) hold for Ik+, ., IN, and we show that they hold for 
Ik 

Let W E Pr(Ik) satisfy W(xk+ ) = v(xk+1) and 

(4.9) f (W- v)Q dx = 0, VQ e P, I(Ik) 

Thus, by Lemma 4.1, 

tl( wJ V)-vL2(1k) + hkll( W - V)xIIL2(Jk) < ChkstIlIH (Vk) 

and 

( W - V)(Xk)I < Chk /2IIVIIHH(Ik). 

Using (4.1) and (4.9), we get 

f(Wk- V)Qdx (v- V)Qdx=O, VQeP,_P. 

Thus (W - V)(x) = CrL,(x), where L,(x) is the Legendre polynomial of degree r 
n the interval Ik and 

C, = (v(xk+l) - V(Xk+I))/Lr(Xk+l). 

Ehus, by our assumption that (4.8) holds for Ik + ,, we get 

|| W- VIIL2() <? I C|1 IILrIIL2(I) ? Chk / Cr 
N 

Ch I/ 2 hs- 1/211rt 

j=k+ I 

Lnd |( w - V)(xk)l = If W -V)(Xk + ,)1 
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Hence, by the triangle inequality, (4.7) and (4.8) follow. This completes the proof 
of the lemma. 

COROLLARY 4.1. Let v and V be as in Lemma 4.2. Then, there exists a constant C, 
independent of h, such that 

|| Vil L2 < Cll V||H 1 

We are now ready to give the proof of Lemma 2.1. Let F E V-1 and v E H'. 
Then for V E XW 

(F, v) = (F, v - v(l) - V) + (F, v(l)) + (F, V). 

Take V E Xk6 to satisfy 

(x, V- V(1) - V) = 0, VXe (=- -I 

Hence, by Corollary 4.1, 11 VIIL2< CIIVIIHI. Thus 

(F, v) J (F, V(1))l I C(F, V)I 
II| II ' IIV| IIH IIV IIL2 

< j(F 1)1 1v(1 + C sup 
j_ 

Xl_j 
IIVIIH' O#-XE6)ll IIXIIL2 

which proves the lemma. 
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